
Zhejiang University / University of Illinois at Urbana-Champaign Institute

Senior Design Individual Report

CAMPUS TOUR GUIDE BY
AI-POWERED AUTONOMOUS

SYSTEM

By

Author Name: Hao Ren
Student ID: 3200110807

Individual Report for Senior Design, Spring 2024
Major: Electrical Engineering

Grade: 2020
Supervisor: Simon Hu
TA: Xinlong Huang

Project No. 21

Senior Design Individual Report Checklist

Notes: Please filled out by the supervisor after the defense.

Author Name Student ID Supervisor

Major &

Grade
 Tel.

Professional title

of Supervisor

Report title Grade assessment

Inspection Content
Evaluation (√)

A B

1. Title Page (using a unified title page, blue recommended)

2. Commitment Statement

3. Acknowledgement

4. Abstract (150 words or less)

5. Contents (with corresponding page numbers)

6. Main body (page numbers start from this point)

7. Reference

8. Appendix (as needed)

9. Author Resume

10. Senior Design Report Task Assignment

11. Senior Design Report Assessment Form

Inspector: Inspection Date:

ii

Senior Design Individual Report

Commitment Statement

1. I solemnly promise that the Senior Design Individual Report submitted was completed in

strict accordance with the relevant regulations of the institute and university under the guidance

of the supervisor.

2. In my Senior Design Individual Report, except where specifically and explicitly indicated,

the report does not contain results that have been published or written by others.

3. Any contribution to this report made by the teammates with whom I worked has been clearly

stated in the report and acknowledged.

4. I promise that I have not falsified data or committed other similar acts in the completion of

the Senior Design Individual Report.

5. If there is any infringement of intellectual property rights or breach of academic integrity in

this Senior Design Individual Report, I shall bear the corresponding legal responsibility.

6. I fully understand that Zhejiang University has the right to retain and send copies and

electronic records of this report to relevant departments or institutions. I authorize Zhejiang

University to compile all or part of the contents of this report into a relevant database for

retrieval and dissemination, and can use photocopying, microprinting or scanning and other

means of reproduction to preserve and archive the report.

Author: Date:

Supervisor: Date:

iii

Acknowledgement

I’m deeply thankful to my parents, friends and colleagues who have worked with me
along the way.

I appreciate the effort my parents paid to raise me and support me through college. Col-
lege is impossible for me without them.

I also appreciate friends that were and are by my side along the way, as well as the help
I gained from this project’s supevisor Dr. Simon Hu, and the TA Xinlong Huang. I’m
deeply thankful to work with the team for the project, including Weiang Wang, Yuntong
Gu and Xuanbo Jin.

Special thanks to the 16 other members in my high school OI team. It’s impossible to be
where I am without their support. We are there for each other over 8 years which is about
one half of my life. We’ve been through suffering and losses, yet we made it so far. My
sincerest wish is that we can continue being there for each other today, tomorrow, and in
the future.

Special thanks to my colleagues and my advisor Dr. Kang at Microsoft, who teaches me
so much in senior year. This simple AI agent system is impossible without my research
experience in his group.

Also, huge thanks to all the people I knew at ZJU-UIUC campus and at UIUC. Many of
you played critical roles in my college years.

I won’t mention any specific names here, as I think that will be a very unfair thing to
do for those who might not be mentioned. And I hope I can make you feel that you are
important to me in real life instead of writing it here. Words are pale and paper means
far less than the effort people pay in real life to defend their believes and love their loved
ones.

iv

Abstract

This report presents a multi-agent AI system designed to provide real-time, interactive
guidance in complex environments like universities. Traditional approaches, including
human guides and early automated systems, face issues of cost, scalability, and adapt-
ability. Our solution leverages AI agents to efficiently handle data collection, processing,
command parsing, and response generation. This system shifts from one guide serving
many users to many AI agents serving individual users, optimizing performance and
user experience. Key components include robust data management, effective task distri-
bution among agents, and stringent ethical and safety measures. Our findings demon-
strate the system’s potential to deliver accurate, timely information and actions, ensuring
a scalable, versatile, and cost-effective solution for real-time guidance. Future research
will focus on enhancing interaction models, scalability, and ethical frameworks to further
improve AI-driven interactive systems.

v

Contents

1 Introduction 1
1.1 Problem and Solution Overview . 1
1.2 Visual Aid . 1
1.3 Motivation . 1
1.4 High-level requirements list . 2
1.5 Single Agent Archictecture . 2

2 Literature Review 3

3 Methdology 4
3.1 Data-side work . 8

3.1.1 Datpath and IO . 8
3.1.2 Mining Insights for Different Data . 9
3.1.3 Handle Different Types of Data with Different Methods 9
3.1.4 Multi-media data gathering, cleaning and tagging 11

3.2 Agent-side work . 12
3.2.1 Notation and Data Structure . 12
3.2.2 Single-agent Design . 12
3.2.3 Intent Identification Module . 14
3.2.4 Retrieval Module: Search Engine . 16
3.2.5 Answer Generation Module . 17
3.2.6 Connecting agents to a network . 19

3.3 Safety and Ethics Work . 22
3.3.1 Addressing AI Hallucination and Grounding 22
3.3.2 Algorithm Description . 23
3.3.3 Initialization . 23
3.3.4 Query Handling . 23
3.3.5 Grounding Results . 23
3.3.6 Main Function . 23

3.4 Evaluation . 24
3.4.1 End2End Answer Generation: Testing and Verification 24
3.4.2 AI-powered Response Generation Subsystem Interface 25

4 Cost Analysis 27
4.1 Labor . 27
4.2 Parts . 27
4.3 Grand Total . 27

5 Conclusion 28

References 30

Appendix A Requirement & Verification Table 31

vi

Appendix B Resume 34

vii

1 Introduction

1.1 Problem and Solution Overview

Anyone entering a place for the first time, like an university, can be quite challenging.
Knowing where you are, how to get to your destination, how to optimize your routes,
knowing factors that will influence your routes can be complicated. Having a real-time
interactive system that guides people through this process is needed. It has been possible
yet not able to scale because it’s not open-sourced, and its hardware isn’t standardized,
and is expensive. The interaction isn’t versatile enough to adapt well under the ever-
changing applications. A cheap and versatile solution is needed.

1.2 Visual Aid

Figure 1: Multi-agent AI operation Visual Illustration

1.3 Motivation

The most traditional paradigm is have human tour guide guiding a group of visitors.
Then when the era of electrical and electronics engineering came, engineers started au-
tomating this process. They designed specific pipelines to emulate this process. However,

1

this automation has intrinsic problem with cost, scalability, as well as generality. Cur-
rently, when artificial intelligence prevails, inserting AI as a component in the pipeline
has significant downsides. Apart from previous problems, most of the components in
the pipeline is not AI-powered, wasting computational resources and efficiency. In light
of these problems, we completely shift the pipeline design to a Multi-agent AI operation
network design, with each of its component AI powered. It can scale easily as all agents
have simple and general interfaces. The average cost is also amortised as the number
of agents increase. Most importantly, the paradigm of all the down stream applications,
including campus tour guide, is shifted from 1 guide leading 100 visitors to 100 guides
leading 1 visitors, letting users to these applications fully exploit the power of AI.

1.4 High-level requirements list

• The AI agents network system should be responsive. It should respond to user’s
request appropriately. It should give appropriate guidance to user in both informa-
tional and operational ways.

• The interface must be clean and useful. It should gives user easy access to the
service.

• The system must distribute and map the request to the correct agent who is most
useful in a certain service and is able to merge and reduce the response from many
agents into one organized response. The choice of agent must be optimized to en-
sure the best holistic accuracy.

1.5 Single Agent Archictecture

Figure 2: Architect of each agent

2

2 Literature Review

AI agents have been with us for many years, and with the rapid development of Large
Language Models (LLMs) such as ChatGPT, AI agents have become a hot topic for engi-
neering and research [1]. However, since the single-agent framework has many limita-
tions such as self-inconsistency, hallucinations, and limited knowledge and skills, multi-
agent frameworks have become increasingly popular [2].

Originally, there was a chat paradigm where an LLM handled the user’s request and
provided an answer [3]. The user’s request is called a prompt, and the prompts along with
their answers form the context of the conversation. The context has a length called context
length. Due to the limited attention span of LLMs, this chat paradigm is intrinsically
bounded by the context length, typically 16K tokens for GPT-3.5 and up to 128K for the
newest GPT-4 model [1], [3]. A common engineering and research practice to increase
the context length involves a fusion of retrieval and generation, meaning the context is
composed by a search engine that fetches only the relevant pieces of information from a
knowledge base to generate new information. This introduces modular designs built on
top of the chat paradigm. As these modules become more versatile and their numbers
increase over time, people have begun to assemble compositions of modules as human
agents. This forms another paradigm for AI generation tasks backed by LLMs, known as
AI agents.

The paradigm of AI agents is a framework backed by chat APIs to conduct various tasks.
Initially, these agents were informational agents, meaning their abilities were limited
to Question-Answer (QA) type tasks [3], [4]. As the accuracy and ability of backend
LLMs increased, people began to ground the results of informational agents to operate
on different objects. These objects could include commands to computers, such as reboot
commands, or commands to different machines, like unmanned aerial vehicles (UAVs)
[3].

The introduction of operational agents created new opportunities but also had limita-
tions. Because the design of an agent is targeted toward a specific type of workload, its
generality is limited [5]. Additionally, due to the hallucination issues of LLMs, the single-
agent approach might require heavy restrictions on the results it generates. To address
these problems, multi-agent systems have been developed to increase the diversity of
answers and enhance the coverage and versatility of the system [2], [6].

In recent studies, multi-agent systems (MAS) have been identified as a powerful solution
to model and solve problems in complex and dynamic environments [2], [5]. They offer an
alternative way to design distributed control systems by enabling multiple agents to work
together to achieve common goals. The landscape of MAS applications spans various
domains, including healthcare, systems engineering, and complex networks [4], [6].

For example, in healthcare, agents can assist in managing patient information and pro-
viding decision support [6]. In systems engineering, MAS and complex network theories
are combined to address optimization and control challenges [4]. Additionally, design
patterns for MAS have been systematically reviewed to identify best practices and trends

3

in the field [7].

3 Methdology

This section delves into three major aspects of the work carried out:

• Data-side Tasks: These tasks encompass all activities related to the collection, pro-
cessing, and formulation of data. This includes gathering data from various sources,
cleaning and organizing the data, and preparing it in a format suitable for use by AI
models and agents.

• Agent-side Tasks: These tasks involve the generation of insights from the data and
the execution of actions based on those insights. This includes the distribution of
tasks among different AI agents, the parsing of commands, and the retrieval of rel-
evant information to answer queries.

• Ethics and Safety: This involves ensuring that the AI systems operate within ethical
guidelines and do not pose safety risks. This includes grounding AI outputs to
prevent hallucinations and ensuring the safety of AI actions.

Design Motivation and Design Alternatives

Information is unavailable and unorganized

Data are ubiquitous and exist in various formats, including multimedia. Efficiently col-
lecting data for an entire campus is labor-intensive. However, the greater challenge lies
in effectively utilizing this multimedia data and retrieving the most relevant information
from an enormous dataset.

Figure 3: Problems emerged when queries are associated campus related data

Figure 3 illustrates the problem that may arise when a user queries campus-related in-
formation. Due to the relatively small amount of relevant data compared to the total
dataset size, the agent struggles to retrieve the corresponding data based on the user’s
intent.

4

Data path is very long for each query

Unlike applications hosted on a single device, our system is distributed across multiple
devices, including two personal computers (PCs) acting as host servers, one web server,
a mobile phone, a UAV, and several cloud services hosted by OpenAI. This system spans
different countries and continents.

Figure 4: Long datapath for each user’s query

The long datapath shown in Figure 4 suggests that it is beneficial to group the devices
and abstract the services behind them as subsystems. Based on this idea, we grouped
the service managing the web server and mobile phone as the user interface subsystem.
We grouped the service managing the UAV and the host server that communicates with
it as the planning and control unit. We also grouped the service hosted on OpenAI and
the host server that communicates with it as the AI-powered response generation subsys-
tem.

Huge gap between informational and operational

Even with proper grounding, where the OpenAI agent is provided with relevant infor-
mation and its intended domain of expertise, the generative responses produced by the
LLM can be highly unstable and unpredictable.

Another significant observation from our initial testing is that there is a 2 out of 25 chance
that GPT could generate a malicious response potentially harmful to the UAV. This re-
quires careful grounding, meaning we must establish a set of restrictions on communica-
tion between AI agents and the UAV.

Complete paradigm change needed

Our group proposes a multi-agent network, focusing on generalization while support-
ing automation and visualization. Imagine a system built for a single-CPU game: with
more resources, a person can add another CPU, but the system must be entirely rebuilt
because it cannot distribute work across multiple CPUs. The same logic applies to our

5

Figure 5: Problems when user types in the command

system. Imagine a system using a UAV to guide users and answer questions about 10 lo-
cations. This system would need a complete overhaul if expanded to 10 UAVs or required
to answer questions about 1000 locations, as it is designed for 1 UAV and 10 locations. It
cannot manage large datasets or multiple UAVs. Our system, however, can handle arbi-
trarily large amounts of knowledge with a sufficiently large database and can expand to
support any number of operational agents, given the resources to build them.

Figure 6: Paradigm change

6

Data-side Tasks

The first aspect focuses on data-related tasks. While there are many impressive advance-
ments in large language models, they often face a trade-off between generality and accu-
racy. Specifically, commercial large language models and their frameworks, such as vari-
ous AI agents, may not perform optimally for specific tasks like providing a campus tour
of ZJU-UIUC if the data is not meticulously processed. To tailor these frameworks and
agents to this specific downstream task, we have undertaken several key activities:

1. Mining Insights from Data: Extracting valuable information from raw data to in-
form decision-making processes.

2. Handling Different Types of Data with Appropriate Methods: Employing various
techniques to process different data formats efficiently.

3. Multi-media Data Gathering, Cleaning, and Tagging: Collecting data from multi-
ple media sources, cleaning it to remove noise and inconsistencies, and tagging it to
facilitate easy retrieval and analysis.

4. Data Evaluation and Visualization: Assessing the quality and relevance of the data
and visualizing it to derive insights and support data-driven decisions.

Agent-side Tasks

The second aspect concentrates on tasks related to AI agents. To establish a well-structured
multi-agent AI operational network, it is essential to perform the following tasks:

1. Agent Distribution: Allocating tasks and responsibilities among different AI agents
to ensure efficient operation.

2. Command Parsing: Interpreting and processing commands issued to the AI system
to ensure accurate execution.

3. Retrieval by Location: Locating relevant information based on geographical or po-
sitional data.

4. Retrieval by Embedding: Using embeddings to find and retrieve information that
is semantically similar to the input query.

5. Answer Generation: Formulating accurate and contextually appropriate responses
to user queries based on the retrieved information.

Ethics and Safety

AI systems, particularly those designed for informational and operational tasks, are prone
to the issue of AI hallucination, where the system generates responses that are plausible
but incorrect or unfounded. Even when an AI generates a well-formulated response,
transforming this response into actions for a UAV interface can be hazardous if not rigor-

7

ously verified. To mitigate these risks and ensure the safety and reliability of AI-generated
outputs, efforts have been dedicated to the following grounding activities:

Efforts in AI safety are crucial, as highlighted by various studies and initiatives. OpenAI’s
approach to AI safety emphasizes iterative deployment and stakeholder engagement to
ensure safe and beneficial AI development [8]. The AI safety landscape includes signifi-
cant contributions from academic institutions like Stanford University, which focuses on
building trustworthy AI systems [9]. The SafeAI workshops, organized by AAAI, are
platforms for discussing AI safety engineering, ethical design, and regulatory standards
[10]. Furthermore, MLCommons’ AI Safety Benchmark aims to evaluate and improve the
safety of AI systems, addressing challenges like hallucination and robustness [11].

1. Informational Grounding: Verifying the accuracy and reliability of the information
generated by the AI before it is used or presented.

2. Operational Grounding: Ensuring that the actions proposed by the AI are safe,
feasible, and aligned with operational guidelines and safety protocols.

3.1 Data-side work

3.1.1 Datpath and IO

Figure 7: Datapath and IO of the AI subsystem

To illustrate the works done on the data side, it’s important to understand the datap-
ath and input/output (IO) of the multi-agent AI system. The diagram provides a clear
overview of the query types, examples, and responses within this AI subsystem.

The diagram categorizes queries into three distinct classes based on their nature and de-
pendencies:

8

Class 0 Query: Command to Drone

Description: These are direct commands issued to the drone, instructing it to perform
specific actions.
Example: “Take off”
Response: The system processes this command and sends a take-off instruction to the
drone.

Class 1 Query: Queries Dependent on User’s Location

Description: These queries require knowledge of the user’s current location to provide
relevant information.
Example: “What’s the closest building near me?”
Response: The system uses the user’s location to determine and provide the nearest
building, such as the “School’s library.”

Class 2 Query: Queries Independent of User’s Location

Description: These queries do not depend on the user’s location and seek general infor-
mation.
Example: “How many books are in the library?”
Response: The system provides the required information, for instance, “About 200,000
books.”

3.1.2 Mining Insights for Different Data

For different data, we have different insights:

• Most data sources are associated with one location, with each location having ap-
proximately 10,000 words of data relevant to the ZJU-UIUC campus.

• Uncategorized data (data sources that aren’t associated with any locations or are
associated with too many locations) tend to be on average ten times longer than
categorizable data.

• Certain types of data, such as map-related data and instruction sets, are consistently
used for specific types of queries.

The diagram above illustrates the data retrieval process backed by a search engine, high-
lighting the handling of different query types. For class 1 and 2 queries, the system re-
trieves location-specific data, general information, and maps. For class 0 queries, it re-
trieves and sends instruction sets to the drone.

3.1.3 Handle Different Types of Data with Different Methods

Handling different types of data efficiently requires tailored methods. Here are some
strategies we employ:

9

Figure 8: Handle different data differently

• Categorization and Tagging: Data is categorized based on its relevance to specific
locations or topics. This ensures that queries can be matched with the most pertinent
information quickly.

• Data Cleaning and Preprocessing: We implement robust data cleaning techniques
to remove noise and inconsistencies from the raw data. This preprocessing step is
crucial for maintaining the accuracy and reliability of the AI system.

• Multi-source Integration: Information from various sources is integrated to form a
comprehensive dataset. This involves merging data from text files, maps, instruc-
tion sets, and other multimedia sources.

• Query-based Filtering: Depending on the type of query (class 0, 1, or 2), different
filters are applied to retrieve the most relevant data. For instance, map data is pri-
oritized for location-based queries, while instruction sets are prioritized for drone
commands.

Each method ensures that the data is not only comprehensive but also easily accessible
and relevant to the user’s query. The integration of these methods into the AI system en-

10

hances its ability to provide accurate and contextually appropriate responses, improving
the overall user experience and operational efficiency.

3.1.4 Multi-media data gathering, cleaning and tagging

The GPT model does not have the ability to answer questions related to ZJU-UIUC. It
failed to answer the 100 testing questions completely. To supply pertinent information
regarding users’ queries, we need a set of data tailored for our application. The data
we will use are in multiple forms as shown in the figure below. These forms include
digital PDFs and paper-based materials placed at various locations within the campus.
We utilize several methods to handle these different forms of information.

Figure 9: Workflow of Data Collection

1. OCR Tool Backed by WeChat: For paper-based materials, we use an Optical Char-
acter Recognition (OCR) tool integrated within WeChat. This tool allows us to scan
physical documents and convert them into digital text.

2. Python Tools to Parse PDFs: For digital PDFs, we employ Python libraries, such as
PyMuPDF, to extract text from PDF files. This method ensures that we can handle a
large volume of documents efficiently.

The code for parsing multi-media material can be found in this directory.

The process of converting these diverse data sources into uniform textual information in-
volves several steps. Initially, multi-media materials are gathered, which include brochures,
posters, and other paper-based information. These materials are then subjected to text
extraction processes using the mentioned tools. Finally, the extracted text is cleaned and
tagged appropriately to ensure its relevance and accuracy.

This transformation allows our AI agent to access and utilize a comprehensive database
of information, enabling it to answer user queries with precise and varied responses. The

11

https://github.com/MooMooHorse/ZJUI_tourguide_openAI_backend/tree/main/utils

goal is to enrich the knowledge base of the AI system, ensuring that it can handle a wide
range of questions related to the ZJU-UIUC campus with ease and accuracy.

3.2 Agent-side work

The design of an agent enables it to complete two types of commands: Question or Com-
mand. Each agent is responsible for a specific type of tasks, which can be either infor-
mational and operational. Also, we have a leading agent in both informational and op-
erational sub-network. We will first introduce the design of the single agent as well as
related works. And then we will go through the part where we link different agents to
form a functioning multi-agent network.

Figure 10: High level design of the agent

3.2.1 Notation and Data Structure

3.2.2 Single-agent Design

The system can be broken into the following parts:

• Vector DB storing related campus material

12

Table 1: Input and Output of the AI-Powered Response Generation Subsystem

Field Name Type Meaning

User Query Input Campus related query or a command to drone

User Location Input Current GPS location of user

Answer Output Answer to user’s question

Command Output Parsed output Command to the drone

Table 2: Vector DB Data Store Table
Field Name Type Meaning

d id INTEGER Indexing of the entries

location STRING Location of the described place

outlook STRING Appearance of the location

keyword STRING keyword of the description

description STRING a text describing related info about a location in ZJUI campus

• Command Parsing module which converts the user’s intent to formulated com-
mand.

• Intent Extraction module extracting user’s intent.

• Search Engine module search for related entries in Vector DB

• Answer Generation

The network contains an intent identification module, to parse the intent. It relays the
request to different portion of network. For example, the class 0 query (queries related
to command) are routed to the operational agents network. Because GPT knows not
so much about ZJU-UIUC campus, we need a retrieval module, to retrieve related data
processed by various components on data-side. And to finally compose an answer, we
will use the previously obtained context as well as intent, and feed them into the answer
generation unit.

Unlike usual linguistic tasks that be completed by a simple call to openAI APIs[12], this
tasks requires offloading logics to retrieval models and huge effort on data collection as
well as processing. The retrieval model requires a clear evaluation scheme to make the
system sustainable and scalable.

13

Figure 11: Intent Identification Workflow

3.2.3 Intent Identification Module

The intent identification module is used to differentiates 3 types of users’ input listed in
the instruction part of the prompt. This module is implemented by a simple prompt to
GPT 3.5. Because of the limitation of GPT models, which can only reach a 7̃0% accuracy
[12] on a general testing multiple choice dataset, the accuracy for handling a specific task
tailored to our application needs to carefully evaluated.

I did preliminary verification of this module by testing 100 questions with labeled answer.
Our module reaches an accuracy of 61%, giving us some space to improve this module.
The 100 questions are visualized in Figure 4 and Figure 5. Figure 4 is a word cloud for
the questions, and Figure 5 is the distribution of the questions of 3 categories mentioned
above in the prompt.

Prompt:

You are an intent categorizer. You are given a query from user, you must output a category
of the query. A query can be of the following types:

1. A command to control the drone. Your output should be 0.

2. A request or a question whose answer depends on the location of the user. Your
output should be 1.

3. A request or a question whose answer doesn’t depend on the location of the user.
Your output should be 2.

14

Few shots:

Query Answer

Stop the drone! 0

What is the bridge in front of me? 1

How is the drone? 0

What is the drone doing? 0

What is the building labeled ”C1”? 2

Tell me how many kinds of food served in the first floor of
school’s canteen.

2

Table 3: Queries and their corresponding answer classifications.

Figure 12: Word Cloud for Query Keywords

Figure 13: Distribution of Queries by An-
swer Category

Testing result by GPT

Passed for query: Fly the drone to the ZJUI Building.
Passed for query: Where can I find the nearest restroom?
Failed for query: What time does the Dining Hall open?
Expected: 2
Got: 1
Failed for query: Take a photo of the Library.
Expected: 0
Got: 1
.....
.....

Passed for query: Where can I get first aid in the ZJUI Building?

15

Passed for query: Broadcast a live feed from the drone
during the campus festival.
Passed for query: Are there any quiet study areas in the Library?
Failed for query: What is the average class size for
undergraduate courses at ZJU-UIUC?
Expected: 2
Got: 1
Passed for query: Is there a place to recharge electric
vehicles near the Dining Hall?
Failed for query: What sustainability initiatives are in
place at ZJU-UIUC?
Expected: 2
Got: 1

Score: 61/100

The alternative to this solution is

1. Upgrading the backing model to GPT4.

2. Conduct further prompt engineering listed in this article [13] to further improve the
accuracy.

3.2.4 Retrieval Module: Search Engine

The information retrieval module utilizes Retreival-Augment-Generation. After carefully
studying this method [14], I choose the most advanced modular design for the module.
The whole design of this agent consists of a multi-media input processing unit, a search
engine unit played as a retriever, as well as a generation unit that synthesize the retrieved
information and generate corresponding output.

The document retriever associates the query with the corresponding location and fetches
the data we gathered for the location. However, this will not be sufficient when the data
we collect for a single location grows in size, as it will exceed the token limit imposed by
GPT. A token limit is the maximum number of tokens you can feed to an LLM at once.
To address this problem, the retriever chunks the external material into ”chunks,” each
with a summary. It then vectorizes the chunks into vectors. The vectorization tool is
provided by OpenAI as well. The distance between the vectors represents the similarity
of the semantics for the text that is vectorized. We utilize this trait to find the top-K
similar chunks to the question by matching the vector of the question to the vectors of the
chunks.

Using this chunking method, we can efficiently address the token limit problem with
the retriever. Preliminary testing and verification were done by manually checking all
tested questions’ logs to see if the retriever works correctly. This process is shown in
Figure 14. I checked the number of questions for which the retriever fetches the correct
external material. This checking was done manually but can further be automated by
aligning a GPT evaluator with human evaluation. This means we will write a script to let

16

Algorithm 1 RAGAgent Initialization and Vector Store Handling
1: procedure INITIALIZE(vector store id, assistant id)
2: Initialize environment
3: Create OpenAI client
4: if assistant id is provided then
5: Retrieve existing assistant
6: else
7: Create new assistant with name and instructions
8: end if
9: if vector store id is provided then

10: Update assistant with vector store
11: end if
12: end procedure
13: procedure CREATE VECTOR STORE(file paths)
14: Create new vector store
15: Open and read files (PDF/TXT) into streams
16: Upload and poll file batch to vector store
17: Print status and file counts
18: Update assistant with new vector store
19: return vector store ID
20: end procedure
21: procedure UPDATE VECTOR STORE TO ASSISTANT(vector store id)
22: Update assistant with vector store ID
23: return vector store ID
24: end procedure

GPT verify the RAG process and align its evaluation with human evaluation. If they are
aligned, it can be shown that the GPT evaluation result is reliable and hence can automate
the evaluation process.

3.2.5 Answer Generation Module

The Answer Generation Module is a crucial component of the Retrieval-Augment-Generation
(RAG) framework. This module synthesizes the retrieved information to generate accu-
rate and contextually relevant responses to user queries. The diagram below illustrates
the workflow of the Answer Generation Module.

Workflow Description

1. User Query: - The process begins with a user submitting a query. This query is directed
to the QA assistant, which is designed to assist in providing answers about specific top-
ics—in this case, related to the ZJU-UIUC campus.

2. Contextual Information and Reference Nodes: - The QA assistant receives the query
along with a list of reference nodes. These nodes contain various pieces of external mate-

17

Algorithm 2 Query Handling
1: procedure QUERY(query)
2: Create thread with user query
3: Create and poll run with thread ID and assistant ID
4: List messages from thread
5: Extract and process message content and annotations
6: Print message content and citations
7: end procedure
8: Main Function
9: Initialize RAGAgent with vector store id and assistant id

10: Perform query on the initialized agent

Figure 14: Workflow of Retrieval Module

rial that might be relevant to answering the query. Each node includes:

• d id: A unique identifier for the node.

• location: The location context of the material.

• keyword: Key terms associated with the material.

• outlook: A brief summary or outlook of the content.

• text: The actual external material that might help in answering the query.

3. Processing by GPT-3.5: - The assembled context, which includes the user query and
the relevant reference nodes, is then processed by the GPT-3.5 model. The model uses
its advanced natural language understanding capabilities to interpret the query within
the provided context. - GPT-3.5 analyzes the query and the associated reference nodes to

18

Figure 15: Answer generation workflow

generate a comprehensive and accurate answer. This involves understanding the nuances
of the query, extracting pertinent information from the reference nodes, and formulating
a coherent response.

4. Answer Generation: - Finally, the GPT-3.5 model produces an answer based on the
synthesized information. This answer is then provided back to the user, ensuring it is
both relevant and contextually appropriate.

Advantages of the Answer Generation Module

The Answer Generation Module leverages the power of advanced language models like
GPT-3.5 to provide detailed and accurate responses. By integrating contextual informa-
tion from reference nodes, the module ensures that the generated answers are not only
based on a comprehensive understanding of the query but also grounded in relevant ex-
ternal materials. This enhances the reliability and relevance of the responses provided to
users.

3.2.6 Connecting agents to a network

Each agent has its own ability, connecting agents together involves code that distributes
tasks to different agents. These pieces of code are modeled as agent leads, as shown in
the diagram. Operational agents and informational agents are both backed by OpenAI’s
API to generate responses. The informational network and operational network are not
independent of each other. GPS signals and commands are passed between the two sub-
networks on demand. The code responsible for this communication is modeled as the
pilot agent shown in the diagram. The safety and grounding units are omitted here and
in the diagram and will be discussed in later chapters.

19

Figure 16: Architect of agent network

Informational Agents

Informational agents form the AI-powered generation subsystem. Each informational
agent has a specific role and accesses a cloud platform for information retrieval and pro-
cessing. For example:

• Librarian Agent: Manages information about library resources and services.

• Lab Manager Agent: Provides details about laboratory facilities and schedules.

• Dining Manager Agent: Offers information on dining options, menus, and services.

• Campus Security Agent: Supplies security-related information and protocols.

The informational agent lead coordinates these agents, ensuring that the relevant infor-
mation is provided based on user queries.

Operational Agents

Operational agents constitute the execution subsystem, where commands are translated
into actions. Each operational agent performs specific tasks based on the commands re-
ceived:

• Campus Security Agent: Manages security operations, potentially including surveil-
lance and emergency responses.

• Route Planning Agent: Handles planning and optimization of routes for campus
navigation.

The operational agent lead ensures that the commands are executed correctly, coordinat-
ing between different operational agents.

20

Pilot Agent

The pilot agent serves as the communication bridge between the informational and oper-
ational agents. It processes GPS signals and commands, ensuring that both networks can
function cohesively. When a user query involves both information retrieval and execu-
tion, the pilot agent coordinates the task, ensuring seamless operation.

Integration and Coordination

The integration of these agents into a cohesive network allows for efficient task distri-
bution and execution. Informational agents gather and process data, while operational
agents act on the processed information. The pilot agent ensures that both networks
communicate effectively, using GPS signals and command relays to maintain synchro-
nization.

This architecture provides a robust framework for handling a wide range of tasks, from
answering queries to executing complex operations on campus. By leveraging OpenAI’s
API and a well-coordinated agent network, we can deliver precise and timely responses
to user needs.

21

3.3 Safety and Ethics Work

3.3.1 Addressing AI Hallucination and Grounding

Algorithm 3 UAVOPAgent Class Initialization and Methods
1: Input: OpenAIITF object
2: procedure INITIALIZE(OpenAI itf)
3: self.OpenAI itf ← OpenAI itf
4: end procedure
5: procedure QUERY(query, prompt←′ uav op agent.prompt′)
6: prompt content← ReadFile(prompt dir, prompt)
7: config data← LoadYAMLFile(agents config dir,′ uav op agent.yaml′)
8: locations← config data[′location′]
9: message list← CreateMessageList(prompt content, locations, query)

10: result← self.OpenAI itf.GetChatCompletionContent(message list, 0)
11: return GroundResult(result)
12: end procedure
13: procedure GROUNDRESULT(result)
14: content← ExtractContent(result)
15: command, location← ExtractCommandAndLocation(content)
16: config data← LoadYAMLFile(agents config dir,′ uav op agent.yaml′)
17: command dict← config data[′command′]
18: location dict← config data[′location′]
19: if IsValidCommand(command, command dict) and (not location or

IsValidLocation(location, location dict)) then
20: command← {command : command dict[command]}
21: if location is None then
22: return FormatAsJSON(command,None)
23: else
24: return FormatAsJSON(command, {location : location dict[location]})
25: end if
26: else
27: return None
28: end if
29: end procedure

AI agents suffer greatly from hallucination, which means the generation of plausible but
incorrect or nonsensical information. This can be particularly problematic in scenarios
requiring precise and accurate responses, such as UAV operations, where incorrect infor-
mation can lead to dangerous or illegal actions [15], [16].

To mitigate these risks, AI agents must be carefully grounded, especially on the opera-
tional side of the AI agent network. Grounding involves validating and verifying the
generated outputs against predefined rules and contexts to ensure their accuracy and
safety [17].

22

Algorithm 4 Main Function to Run UAVOPAgent
1: itf ← OpenAIITF()
2: agent← UAVOPAgent(itf)
3: Print(agent.Query(”Take off the drone”))
4: Print(agent.Query(”Land the drone”))
5: Print(agent.Query(”Do a barrel roll”))
6: Print(agent.Query(”Fly the drone to the library”))
7: Print(agent.Query(”Fly the drone to the center of the lake and land it”))

Hence, the following sample algorithm showcases the effort we put into grounding the
UAV operational agent. It ensures that no illegal command will be output by the UAV
operational agent under any circumstances [18].

3.3.2 Algorithm Description

The algorithm for the UAVOPAgent class ensures the grounding of commands issued to
UAVs. Here’s a detailed breakdown:

3.3.3 Initialization

The Initialize procedure sets up the OpenAI interface required for the agent to func-
tion. It prepares the agent to handle queries by establishing the necessary environment.

3.3.4 Query Handling

The Query procedure handles user queries. It reads a predefined prompt, loads config-
uration data, and prepares a list of messages to be processed. The query is sent to the
OpenAI model, and the response is obtained.

3.3.5 Grounding Results

The GroundResult procedure ensures that the generated command and location are
valid. It extracts the relevant content, validates the command against predefined rules,
and formats the result appropriately. If the command or location is invalid, it returns
None, ensuring no illegal command is output.

3.3.6 Main Function

The main function demonstrates the execution of the UAVOPAgent. It initializes the agent
and processes several sample queries, showcasing the grounding process in action. This
ensures that the UAV operational agent only executes safe and valid commands.

By incorporating stringent validation and grounding procedures, the UAVOPAgent en-
sures the safe and reliable operation of UAVs, mitigating the risks associated with AI
hallucinations.

23

3.4 Evaluation

3.4.1 End2End Answer Generation: Testing and Verification

Combining data collection, intent identification, document retriever, as well as answer
generator, we have an end to end solution which accepts a user’s query and output a
corresponding answer. I have evaluated the intent identification part as well as the RAG
part. I then evaluated the end-to-end process by using human evaluation as well as com-
ments. This process both let the designer case-study an appropriate amount of questions,
and provide few-shots examples so that we can also conduct automation of evaluation
and align it with human evaluation.

The verification is conducted with the following methodology. I first design 15 different
questions across 4 testing locations with abundant external materials. Next, I use these 15
questions I designed as few-shots examples to let GPT generate 15 another examples ran-
domly across the 4 testing locations. The results shows that among 30 testing questions,
human identified 13.3% incorrect answers to human asked questions, and 0% incorrect
answers to GPT asked questions. The score graded by human is also displayed in Figure
6 accross different locations.

Figure 17: Evaluation of answer distributed by testing locations

As shown in figures above, our end-2-end evaluations prove to be accurate and valid
against questions to ZJU-UIUC campus, and can provide sufficient guidance to visitors.
We have our code for the agent open-sourced, along with testing dataset, testing scripts
in the following project repository.

To further investigate the problmes of the current design and conduct efficient version it-
erations, we visualize the comments to the experiment results in the word clouds shown
in Figure 8. We find that a source of problem is still token limit of LLM module being ex-
ceeded. This is because we haven’t implemented chunking part as discussed above. This
is considered a next step accorinding to the pace of other subsystems of this project.

We have demonstrate the end-2-end workflow in Figure 9. On the left is input to our
design, and on the right is the output. As one can see, we support batch input mode and

24

Figure 18: Analysis of End to End Accuracy as well as RAG accuracy

output-mode. And the process is properly logged.

3.4.2 AI-powered Response Generation Subsystem Interface

The code is available at project repos

25

https://github.com/MooMooHorse/ZJUI_tourguide_openAI_backend

Figure 19: Major problems with current module for human and gpt-generated questions

Figure 20: Interface Demo

26

4 Cost Analysis

4.1 Labor

The labor cost is calculated based on the working hours and wage pricing of each team
member. We set the hourly wage at 100 RMB based on market research and the skill
levels of team members. Considering the total project duration of 8 weeks with 40 hours
of work per week, the total working hours per team member are: 320 hours. Therefore,
the labor cost per team member is:

100 RMB/hour× 320 hours = 32000 RMB

We chose an hourly wage of 100 RMB, which is based on market wage levels and the
skill and experience levels of team members. According to survey data from the Institute
of Electrical and Electronics Engineers (IEEE) [19], the average salary for graduates in
Electrical and Computer Engineering (ECE) is around 200,000 RMB per year. Calculated
on a full-time basis, the average hourly wage is approximately 100 RMB.

4.2 Parts

The table below provides a breakdown of the parts and their estimated costs:

Description Manufacturer Part # Quantity Cost (RMB)

Drone PixHawk MFP450 1 5174

Mavlink Module Amovlab - 1 680

Temperature Sensor Aosong DHT11 2 10

Acceleration Sensor MiraMEMS DA213B 2 15

LCD Screen Touglesy LCD1602 1 20

PCB Board Custom - 1 50

Simple Application Server Alibaba Cloud - 1 49 per month

ChatGPT4 API OpenAI - 1 240 per month

Table 4: Parts List and Estimated Costs

4.3 Grand Total

The grand total cost of the project can be calculated by summing up the labor cost and the
cost of parts:

• Labor: 32,000 RMB

• Parts: 6,819 RMB

Grand Total: 32000 + 6819 = 38,819 RMB

27

5 Conclusion

In this report, we explored the comprehensive architecture and functionality of an AI-
powered multi-agent system designed for the ZJU-UIUC campus. This system integrates
various specialized agents, each with unique roles, to deliver precise and contextually
relevant information and services.

Informational Agents

We delved into the roles of informational agents, which form the AI-powered genera-
tion subsystem. These agents, such as the Librarian Agent, Lab Manager Agent, Dining
Manager Agent, and Campus Security Agent, are crucial for gathering, processing, and
providing data pertinent to their specific domains. Coordinated by the informational
agent lead, these agents ensure that user queries are answered with the most relevant
information retrieved from a cloud platform.

Operational Agents

The operational agents constitute the execution subsystem, where the commands gen-
erated by the informational agents are executed. This includes agents like the Campus
Security Agent and the Route Planning Agent, which handle security operations and nav-
igation planning, respectively. The operational agent lead ensures that these commands
are carried out accurately and efficiently.

Pilot Agent

The pilot agent serves as the communication bridge between the informational and oper-
ational agents. It manages the transfer of GPS signals and commands, ensuring seamless
interaction between the two subsystems. This coordination is crucial for tasks that require
both information retrieval and action execution.

Addressing AI Hallucination and Grounding

A significant focus of our system is on mitigating AI hallucinations, which can result in
incorrect or nonsensical information. Grounding, especially in the operational side of the
AI agent network, ensures that all commands are validated and safe. The UAVOPAgent
class exemplifies this effort by strictly validating and grounding UAV commands to pre-
vent any illegal or unsafe actions.

Retrieval-Augment-Generation Framework

The system utilizes a Retrieval-Augment-Generation (RAG) framework to enhance the
accuracy and relevance of responses. This involves chunking large data sets to address
token limits, vectorizing these chunks, and using similarity matching to retrieve the most
relevant information. This approach ensures that the system can handle extensive data
efficiently while providing accurate responses to user queries.

28

Integration and Coordination

The integration of informational and operational agents into a cohesive network, facili-
tated by the pilot agent, allows for efficient task distribution and execution. This architec-
ture ensures that the system can handle a wide range of tasks, from simple information
retrieval to complex operational commands, providing a robust and reliable service to the
users.

In conclusion, the multi-agent system for the ZJU-UIUC campus represents a sophis-
ticated and well-coordinated approach to leveraging AI for campus management. By
addressing key challenges such as AI hallucination and ensuring seamless integration
between information retrieval and operational execution, this system sets a strong foun-
dation for advanced AI applications in campus environments and beyond.

Safety and Ethics

To follow the IEEE ethics manual [20], I did some steps to ground the output of our AI-
agent so it will be reliable and not propagate misinformation as well as unethical infor-
mation.

29

References

[1] MDPI, “Chatgpt and open-ai models: A preliminary review,” Future Internet, 2022.
[2] J. P. Müller and K. Fischer, Application Impact of Multi-Agent Systems and Technologies:

A Survey. Springer, 2014, pp. 27–53.
[3] G. et al., “Gpt (generative pre-trained transformer) – a comprehensive review on

enabling technologies, potential applications, emerging challenges, and future di-
rections,” arXiv preprint arXiv:2311.10242, 2022.

[4] M. Herrera, M. Pérez-Hernández, A. K. Parlikad, and J. Izquierdo, “Multi-agent
systems and complex networks: Review and applications in systems engineering,”
Processes, vol. 8, no. 3, p. 312, 2020.

[5] A. Sturm and O. Shehory, The landscape of agent-oriented methodologies. Springer Berlin
Heidelberg, 2014, pp. 137–154.

[6] D. Isern and A. Moreno, “A systematic literature review of agents applied in health-
care,” Journal of Medical Systems, vol. 40, no. 2, p. 43, 2016.

[7] M. Falco and G. Robiolo, “A systematic literature review in multi-agent systems:
Patterns and trends,” in XLV Conferencia Latinoamericana de Informática, Centro Lati-
noamericano de Estudios de Informática (CLEI), IEEE, 2019.

[8] OpenAI, “Our approach to ai safety,” OpenAI, 2023. [Online]. Available: https://
openai.com/our-approach-to-ai-safety.

[9] S. University, Stanford ai safety, 2023. [Online]. Available: https://aisafety.stanford.
edu/.

[10] S. Workshop, Safeai 2023 – aaai’s workshop on artificial intelligence safety, 2023. [On-
line]. Available: https://safeai.webs.upv.es/.

[11] M. A. S. W. Group, “Introducing v0.5 of the ai safety benchmark from mlcommons,”
2024. [Online]. Available: https://ar5iv.org/abs/2404.12241.

[12] OpenAI, J. Achiam, S. Adler, et al., Gpt-4 technical report, 2024. arXiv: 2303 .08774
[cs.CL].

[13] L. Weng, “Prompt engineering,” lilianweng.github.io, Mar. 2023. [Online]. Available:
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/.

[14] P. Zhao, H. Zhang, Q. Yu, et al., Retrieval-augmented generation for ai-generated content:
A survey, 2024. arXiv: 2402.19473 [cs.CV].

[15] IBM, “What are ai hallucinations?,” 2023. [Online]. Available: https://www.ibm.
com.

[16] M. Sloan, “When ai gets it wrong: Addressing ai hallucinations and bias,” 2023.
[Online]. Available: https://mitsloanedtech.mit.edu.

[17] SuperAnnotate, “Ai hallucination: Complete guide to detection and prevention,”
2023. [Online]. Available: https://www.superannotate.com.

[18] arXiv, “Human-machine teaming for uavs: An experimentation platform,” 2023.
[Online]. Available: https://ar5iv.org.

[19] “IEEE (Institute of Electrical and Electronics Engineers) Salary Survey,” 2022.
[20] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/

about/corporate/governance/p7-8.html (visited on 02/08/2020).

30

https://openai.com/our-approach-to-ai-safety
https://openai.com/our-approach-to-ai-safety
https://aisafety.stanford.edu/
https://aisafety.stanford.edu/
https://safeai.webs.upv.es/
https://ar5iv.org/abs/2404.12241
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://arxiv.org/abs/2402.19473
https://www.ibm.com
https://www.ibm.com
https://mitsloanedtech.mit.edu
https://www.superannotate.com
https://ar5iv.org
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Requirement & Verification Table

Table 5: Subsytem Index Table

Subsystem Name Subsystem Index(S-Index)

AI Powered Response Generation Subsystem 1

User Interface Subsystem 2

Planning and Control Subsystem 3

Sensor Unit Subsystem 4

Table 6: Requirement & Verification Table

S-Index Requirement Verification Points

1 Detect user intent with
at least 25% accuracy

Test with a diverse
set of input queries

and verify the accuracy
of intent detection.

2

1 Detect user intent with
at least 50% accuracy

Continue testing and refining
to achieve higher accuracy. 2

1 Generate response within
60 seconds

Measure retrieval time with
various queries to ensure

performance within the initial
time limit.

2

1 Generate response within
40 seconds

Measure retrieval time with
various queries to ensure
performance within the

initial time limit.

2

1 Generate response within
30 seconds

Optimize system to improve
performance and meet the

final time requirement.
1

1 Can fetch correct external
material with 20% accuracy

Testing the agent’s RAG
accuracy by using manually
labeled dataset containing

30 questions for
4 testing locations.

1

Continued on next page

31

Table 6 continued from previous page

S-Index Requirement Verification Points

1 Can fetch correct external
material with 50% accuracy

Testing the agent’s
RAG accuracy by using

manually labeled dataset
containing 30 questions
for 4 testing locations.

2

1 Can fetch correct external
material with 70% accuracy

Testing the agent’s
RAG accuracy by using

manually labeled dataset
containing 30 questions
for 4 testing locations.

1

1

Generated answers must match
the user’s intent with

an accuracy of at
least 25% in given dataset

Compare generated answers
from the dataset containing
30 questions with human

labeled answer to calculate
initial accuracy.

3

1

Generated answers must match
the user’s intent with

an accuracy of at
least 50% in given dataset

Compare generated answers
from the dataset containing
30 questions with human

labeled answer to
calculate initial accuracy.

3

2
The web server must handle and

route messages with less than
2 seconds latency

Test message routing on the server
under load and measure latency 2

2

The client interface
must provide intuitive

access for users to submit queries
and control the UAV

Conduct usability testing with
participants to assess ease of use

and intuitiveness
1

2

UAV command buttons must send
correct instructions

to the UAV subsystem
with 100% accuracy

Test each button and verify that
the correct command is sent to

the UAV subsystem
1

2
The web server must send
instructions and questions

separately to different hosts

Test two hosts
if they receive correct messages 1

2
Obtain the user’s
GPS position as

the starting position

Test if the two hosts
receive the GPS signal 1

2
The host which process

the questions can
display answers correctly

Check if the UI can
display reasonable answers 2

Continued on next page

32

Table 6 continued from previous page

S-Index Requirement Verification Points

2
The host which process

the instructions can
send commands to UAV

UAV can take-off,
Stop, Continue, Land
correctly and in time

2

3
Must accurately process user
commands and drone status

within 10 second

Perform stress testing with
simultaneous user commands and

verify response time
3

3
Must accurately process user
commands and drone status

within 1 second

Perform stress testing with
simultaneous user commands and

verify response time
3

3 Must optimize the UAV route
based on the current status

Test with different scenarios
(no-fly zones, different areas) to verify

route optimization
3

3
Should maintain a secure and
encrypted connection to the

remote server

Verify the encryption standards
and conduct penetration testing

to assess security
1

3 Must integrate seamlessly with
the PX4 APIs for flight control

Execute a series of flight tests
to ensure proper integration

and control
1

4 Power supply successfully
power the hardware unit Power supply LED works correctly 1

4 Sensors can operate properly Connect the sensors to the test board
Use oscilloscope to read the output data. 2

4 LCD screen can display normally

Connect the LCD screen to the test board
Provide appropriate power.

Send test data to the LCD screen
Check if the screen displays correctly.

2

1,2
3,4 End to End works correctly

Can complete a guide
for appointed locations

while iteracting with visitors
5

33

Appendix B Resume

Author Name Hao Ren

Student ID 3200110807

Educational background 2017.9.1 - 2020.7.1, Zhilin High School

2020.9.1 - 2024.7.1, Zhejiang University

Awards received MCM Final List

Participation in projects

Architect the project and workflow
Build multi-agent AI network to power the system

Divide the work to different members
Understand each part of

the design and unblock hard problem
Have 1-on-1 meeting with members to understand the

blocking issues and give constructive advice

34

Senior Design Report Task Assignment

1. Report Title: Smart Power Routing with MPPT-Based Wind Turbine

2. Guidelines from supervisors regarding schedule and requirements for project

and report:

Schedule:

Requirements:

Notes: Start date: January 15, 2024; End date: May 24, 2024.

Supervisor: Professional title:

3. Institute Review Comments:

Dean: Date:

35

Senior Design Individual Report Assessment Form

1. Supervisor’s comments on the Senior Design Individual Report:

Supervisor: Professional title:

2. Defense Committee’s comments on the Senior Design Individual Report:

Grade:

Defense Committee Chairman: Date:

36

	Introduction
	Problem and Solution Overview
	Visual Aid
	Motivation
	High-level requirements list
	Single Agent Archictecture

	Literature Review
	Methdology
	Data-side work
	Datpath and IO
	Mining Insights for Different Data
	Handle Different Types of Data with Different Methods
	Multi-media data gathering, cleaning and tagging

	Agent-side work
	Notation and Data Structure
	Single-agent Design
	Intent Identification Module
	Retrieval Module: Search Engine
	Answer Generation Module
	Connecting agents to a network

	Safety and Ethics Work
	Addressing AI Hallucination and Grounding
	Algorithm Description
	Initialization
	Query Handling
	Grounding Results
	Main Function

	Evaluation
	End2End Answer Generation: Testing and Verification
	AI-powered Response Generation Subsystem Interface

	Cost Analysis
	Labor
	Parts
	Grand Total

	Conclusion
	References
	Appendix Requirement & Verification Table
	Appendix Resume

